Finite element analysis of instantaneous mesh stiffness of cylindrical gears (with and without flexible gear body)

Author(s):  
Jianfeng Li ◽  
Mingtian Xu ◽  
Shouyou Wang
2005 ◽  
Vol 128 (1) ◽  
pp. 90-97 ◽  
Author(s):  
Jian D. Wang ◽  
Ian M. Howard

Finite element analysis can incorporate two-dimensional (2D) modeling if the geometry, load, and boundary conditions meet the requirements. For many applications, a wide range of problems are solved in 2D, due to the efficiency and costs of computation. However, care has to be taken to avoid modeling errors from significantly influencing the result. When the application area is nonlinear, such as when modeling contact problems or fracture analysis, etc, the 2D assumption must be used cautiously. In this paper, a large number of 2D and three-dimensional (3D) gear models were investigated using finite element analysis. The models included contact analysis between teeth in mesh, a gear body (disk), and teeth with and without a crack at the tooth root. The model results were compared using parameters such as the torsional (mesh) stiffness, tooth stresses and the stress intensity factors that are obtained under assumptions of plane stress, plane strain, and 3D analysis. The models considered variations of face width of the gear from 5 mm to 300 mm. This research shows that caution must be used especially where 2D assumptions are used in the modeling of solid gears.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

Sign in / Sign up

Export Citation Format

Share Document